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Abstract

Survey experimentalists often want to estimate the effect of a treatment among
respondents who actually “receive” treatment. To account for noncompliance and
inattention, researchers frequently include post-treatment manipulation checks in their
survey experiments. Unfortunately, current methods assume that compliance and at-
tention can be measured without error. In reality, inattentive and noncompliant re-
spondents are particularly prone to measurement errors, leading to biased causal effect
estimates. In this paper, I develop a computational method for sharply bounding
causal effects with manipulation checks that are prone to such measurement errors. To
account for sampling variability, I also construct confidence intervals that achieve their
nominal asymptotic coverage under a mild differentiability condition. The method
for constructing confidence intervals solves the overcoverage problem for confidence
intervals in existing optimization-based bounding methods and should be broadly ap-
plicable.

1 Introduction
Survey experiments have become a cornerstone of empirical research in political science,
providing a powerful tool for understanding how different treatments influence respondents’
attitudes and behaviors. The ability to manipulate key variables and observe their impact
in a controlled setting makes survey experiments an invaluable approach for testing theories
and generating robust empirical evidence across the subfields of political science. Indeed, a
recent study found that survey experiments comprise about 20% of all recently published
articles in top political science journals (Briggs et al. 2025). Other meta analyses have
shown that survey experiments are the majority of preregistered studies in political science
(slough).

Manipulation checks, including post-treatment attention and comprehension checks, play
a crucial role in interpreting the results of survey experiments. These checks are designed
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to verify that participants have actually received and understood the treatment as intended
by the researchers. Without manipulation checks, it would be difficult to determine whether
any observed effects can be attributed to the content manipulated by the survey experiment
or the causal mechanisms identified anticipated by the researcher (Mutz 2021). By including
questions that assess participants’ comprehension and engagement with the treatment, re-
searchers can confirm that the experimental manipulation has been successfully implemented
and/or test causal mechanisms.

However, survey measurement error poses a significant challenge to the reliability of ma-
nipulation checks. Respondents may not always provide accurate answers to manipulation
check questions due to various reasons, such as lack of attention or comprehension of either
the manipulation check item(s) or the experimantal stimulus (e.g., a long vignette). Survey
measurement error is pervasive in political science (Clayton et al. 2023; Blair, Chou, and
Imai 2019; Westwood et al. 2022). In this case, measurement error can lead to incorrect
classifications of respondents. Consequently, some respondents who were inattentive or oth-
erwise were not manipulated by the treatment can mistaken as attentive or having been
successfully manipulated. Thus, researchers cannot take manipulation check results at face
value and should account for potential errors when interpreting their findings. At present,
there is no method that accounts for measurement error in manipulation checks.

This paper contributes a new method for bounding causal effects in survey experiments
that accounts for measurement error in manipulation checks. Like related methods (Lee
2009; Aronow, Baron, and Pinson 2019), the proposed method attempts to bound the aver-
age causal effect of the treatment among the subset of respondents who would be compliant
in both the treatment and control conditions. However, unlike related methods, the pro-
posed method can account for measurement error in the measure of compliance (i.e., the
manipulation check). The proposed method is also more assumption-flexible in that the
researcher can drop or add assumptions about the data-generating process to the bounding
method. For example, the reseracher can perform a sensitivity analysis on the commonly
invoked monotonicity assumption (Lee 2009), or the researcher can vary the assumed false
positive rate of the screener.

To faciliate this methodological contribution to survey methods, this paper makes a
second contribution by developing a new computational method for bounding parameters of
models of categorical random variables with missing data. Following Duarte et al. (2024),
known as autobounds, I represent the bounding problem as a pair of numerical optimization
problems. However, I show that, in this setting, the bounding problem can be formulated as a
pair of convex optimization problems, namely linear and second-order cone programs, which
can be solved extremely quickly with Newton-method-like convergence guarantees (Boyd and
Vandenberghe 2004). This computational approach enables researchers to perfor sensitivity
analyses with many different assumptions and/or parameter values in a reasonable amount
of time.

Furthermore, I derive confidence intervals for the bounds that achieve their nominal
asymptotic coverage under a differentiability condition. The method for modifying the op-
timization problems to produce a confidence interval is similar to the “asymptotic bounds”
approach of Duarte et al. (2024). However, I derive the relationship between the observed
data confidence region radius and the resulting confidence interval width, enabling the cal-
ibration of the confidence interval to achieve the desired asymptotic coverage rate. This
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solves the overcoverage problem of existing methods (Duarte et al. 2024). The proof is
surprisingly general, enabling researchers to derive calibrated confidence intervals for other
optimization-based methods.

The rest of the paper is organized as follows. In Section 2, I introduce the framework for
survey experiments with manipulation checks and measurement error. Section 3 presents the
method for bounding causal effects of interest using linear programming. Section 4 extends
the method to account for sampling variability and construct confidence intervals using
second-order cone programming. Section 5 applies the method to two empirical examples,
demonstrating its practical utility. Finally, I conclude with a summary of contributions and
directions for future research.

2 Framework

2.1 Survey experiments with noncompliance
Consider a survey experiment sample with n respondents, who I treat as though they were
drawn i.i.d. from an infinite superpopulation (Assumption A0). Each respondent in the sam-
ple is randomly assigned to a binary treatment condition D ∈ {0, 1}. The researcher is inter-
ested in the effect of the treatment condition on a categorical outcome Y ∈ {y1, y2, . . . , yK}
with K possible values.1 Of course, with no further considerations, standard experimental
methods can be used to quantify the average causal effect of D on Y .

Generally, the researcher is most interested in respondents who actually received treat-
ment stimulus. I call these compliant respondents, meaning the respondent is attentive to
and/or comprehends the stimulus and/or was successfully manipulated by the stimulus.2
For example, in a survey experiment on media effects, the researcher may want to estimate
the effect of being assigned to a particular media source on respondents’ political attitudes.
However, if some respondents do not actually read the assigned media source, then the effect
of the treatment on the outcome is not actually the effect of the media source, but rather
a composite effect of the media source and the decision to read it. To estimate the effect
of the media source on attitudes, the researcher would ideally restrict their analysis to just
those compliant respondents who would always read the media source.

To classify respondents as compliant or not, researchers often rely on manipulation checks
as measures of compliance. Manipulation checks, which could include post-treatment atten-
tion and/or comprehension checks, are used to verify that the experimental manipulation
has the intended effect on the participants. For example, if the experiment involves exposing
participants to a particular message, a manipulation check might involve asking partici-
pants questions to confirm that they understood and internalized the message. Naturally,
manipulation checks are measured post-treatment.

1. In practice, most survey outcomes used in political science are categorical, either unordered or ordered.
In exceptional cases, researchers can usually convert continuous outcomes into categorical outcomes by
binning.

2. Note that this definition of compliance is distinct from the notion of compliance used in the literature
on instrumental variables.
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In this paper, I refer to all types of manipulation checks as “screeners” for simplicity.3
I treat screeners as being measured post-treatment since pre-treatment screeners can be
represented as a special case of post-treatment screeners in my model (see below). The
question of whether pre- or post-treatment screeners should be preferred over the other is
outside the scope of this paper.4

Formally, I model the screener measure as a binary indicator S ∈ {0, 1}, where S = 1
indicates that the respondent passed the screener and S = 0 indicates that they failed. This
binary screener could potentially be a measure composed of multiple survey items.

Like almost any other type of survey measure, the screener is most likely an (imperfect)
measure of the underlying concept of compliance that the screener seeks to measure. Let
A ∈ {0, 1} denote the unobserved indicator of compliance. A respondent satisfies A = 1 if
they have exerted enough effort to automatically pass the screener. Consequently, A = 1
implies S = 1. Respondents who don’t exert enough effort to pass the screener automatically
are considered noncompliant, A = 0.

Ideally, the screener would indicate compliance perfectly, S = A. However, due to survey
measurement error, the screener could misclassify some respondents. For example, if the
screener’s survey item is a multiple choice question with one correct answer (screener pass
if correct, screener fail otherwise), then some fraction of noncompliant respondents might
accidentally pass the screener by chance. This would result in A = 0 even though S = 1
(i.e., a “false positive”). Note that, given how compliance is defined based on the screener
measure, any measurement error can only result in false positives. Measurement error in
this model cannot produce “false negatives” (A = 1 and S = 0).

Critically, compliance A is not observed. The researcher only observes the screener
S, and so the researcher must rely on the screener as a proxy for compliance. The fact
that the screener is an imperfect measure of compliance frustrates existing methods, which
implicitly assume compliance is measured perfectly (c.f. Aronow, Baron, and Pinson 2019),
and suggests a new approach might be necessary.

2.2 Potential outcomes and principal strata
To characterize the causal effect of the treatment stimulus among compliant respondents,
I use a potential outcomes model. For respondent i, they are first assigned to a binary
treatment Di ∈ {0, 1}. Then (simultaneously) their compliance status Ai ∈ {0, 1} is realized,
their screener Si ∈ {0, 1} is measured, and their categorical outcome Yi ∈ {y1, . . . , yK} is
measured. I impose the following (largely untestable) assumptions on this process.

Assumption A1 (SUTVA). The Stable Unit Treatment Value Assumption (SUTVA) holds,
meaning there is no interference between units and no hidden versions of the treatment.
Formally, for any unit i, the realized values of the random variables are given by

Ai = Ai(Di), Si = Si(Di), Yi = Yi(Di). (1)
3. In some cases, there is no clear distinction between a manipulation check and a post-treatment attention

check anyway.
4. In Study 1 below, I show that a pre-treatment screener fails to remove many noncompliant respondents

from the sample that were caught by a post-treatment screener.
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Assumption A2 (Random Assignment). The treatment D is randomly assigned, indepen-
dent of all potential outcomes.

Di⊥⊥(Ai(0), Ai(1), Si(0), Si(1), Yi(0), Yi(1)). (2)

Furthermore, 0 < P (Di = 1) < 1, meaning all respondents have a positive probability of
being assigned to either condition.

Note that invoking SUTVA and random assignment is usually uncontentious in the sur-
vey experimental literature since the survey experiment setting is carefully controlled and
respondents often take surveys independently. I leave extensions to survey experiments with
interference to future work.

These baseline assumptions allow us to define the principal strata needed to characterize
the causal estimand of interest. Based on their potential compliance statuses, each respon-
dent can be categorized into one of four principal strata: always-compliant (Ai(0) = Ai(1) =
1), never-compliant (Ai(0) = Ai(1) = 0), activated-compliant (Ai(0) = 0, Ai(1) = 1), and
suppressed-compliant (Ai(0) = 1, Ai(1) = 0). As alluded to above, the substantive effect of
the treatment on the outcome is most scientifically interesting among the always-compliant
stratum, where Ai(1) = Ai(0) = 1. These are the respondents who are attentive to and/or
manipulated by the treatment as intended by the researcher in both conditions. By contrast,
in the activated-compliant and suppressed-compliant strata, the effect of the treatment on
the outcome is confounded by the effect of the treatment on compliance, a potentially strong
mediator of the treatment’s effect on the outcome. Likewise, the treatment effect among the
always-noncompliant is ignored because it is unclear what respondents are reacting to (if
they are reacting at at all) given they are inattentive and/or not manipulated.

Therefore, the causal estimand of interest is the average treatment effect among the
always-compliant stratum (ATAC).

ATAC = E[Yi(1)− Yi(0) | Ai(1) = 1, Ai(0) = 1] (3)

This estimand captures the effect of the treatment on the outcome while holding compliance
fixed across conditions. In contrast, the basic average treatment effect (ATE) is contaminated
by the other principal strata.

Unfortunately, there are two major difficulties to identifying (and thus estimating) the
ATAC. First, the researcher can only observe one set of potential outcomes per respondent
(i.e., the fundamental problem of causal inference). It is therefore impossible to assign
respondents to principal strata to calculate the conditional expectation even when compliance
Ai is measured without error. Second, compliance Ai is generally measured with error, which
would make it difficult to assign respondents to principal strata even if the fundamental
problem of causal inference could be resolved.

To parse what elements of the data-generating process are obfuscating the ATAC, it is
useful to decompose the bias of using the “naive” difference-in-means among those who pass
the screener. Let

DiMS = E[Yi | Si = 1, D = 1]− E[Yi | Si = 1, D = 0] (4)
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denote the difference-in-means among those who pass the screener (DiMS). For most re-
searchers, this parameter would be the (identifiable) quantity that they would—understably—
estimate as a proxy for the ATAC. The following result clarifies the bias that results from
equating the DiMS with the ATAC.

Lemma 1.

DiMS− ATAC = B1 −B2 +B3 −B4, (5)

where the bias terms are defined as

B1 =
P [Ai(0) = 0, Ai(1) = 1]

P [Ai(0) = 0, Ai(1) = 1] + P [Ai(0) = 1, Ai(1) = 1] (6)

× (E[Yi(1) | Ai(0) = 0, Ai(1) = 1]− E[Yi(1) | Ai(0) = 1, Ai(1) = 1]) (7)

B2 =
P [Ai(0) = 1, Ai(1) = 0]

P [Ai(0) = 1, Ai(1) = 0] + P [Ai(0) = 1, Ai(1) = 1] (8)

× (E[Yi(0) | Ai(0) = 1, Ai(1) = 0]− E[Yi(0) | Ai(0) = 1, Ai(1) = 1]) (9)
B3 = E[Yi(1) | Si(1) = 1]− E[Yi(1) | Ai(1) = 1] (10)
B4 = E[Yi(0) | Si(0) = 1]− E[Yi(0) | Ai(0) = 1]. (11)

See proof on page 22.
Lemma 1 shows the bias can decomposed into two components. The first component,

principal strata misclassification arises because respondents with treated compliance Ai(1) =
1 may belong to either the always-compliant or activated-compliant strata (B1). Similarly,
respondents with untreated compliance Ai(0) = 1 may belong to either the always-compliant
strata or suppressed-compliant strata. When these strata diverge in the relevant potential
outcomes, the bias terms B1 and B2 increase in magnitude. Unfortunately, the researcher
cannot adjust for these differences or calculate the relevant probabilities because the principal
strata memberships are unknown.

The second component, screener error (B3 and B4) arises because Si = 1 does not
generally mean that Ai = 1. Therefore, some noncompliant respondents can contaminate
the subset of respondents who pass the screener relative to the always-compliant stratum.
This is the bias that results from measurement error in the screener.

Given the difficulties in correcting for the bias, the best that the researcher can do
is to try and partially identify (i.e., bound) the ATAC by combining the observed survey
experimental data with the researcher’s assumptions about the data-generating process. The
next section lays out some assumptions on the data-generating process that will make the
partial identification bounds tighter (i.e., more precise).

2.3 Further identification assumptions
To make the bounds on the ATAC as precise as possible, I consider a range of assumptions
that either constrain the relationship between compliance Ai and the screener Si or constrain
the treatment’s causal effects on compliance.
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Assumption A3 (No False Negatives, Known False Positive Rate). Compliant respondents
always pass the screener. Noncompliant respondents pass the screener with a known false
positive rate αd ∈ [0, 1) that may depend on the treatment condition d. Formally, for
d ∈ {0, 1},

P [Si(d) = 1 | Ai(d) = 1] = 1 (12)
P [Si(d) = 1 | Ai(d) = 0] = αd. (13)

There are two ideas embedded in this assumption. First, there are no false negatives: if
a respondent is compliant, then they will pass the screener without fail. As discussed above,
this is part of the definition of compliance.

Second, the false positive rate αd is known and constant across respondents. It is usually
straightforward to guess a reasonable value of αd. For example, if the screener is a multiple
choice question with one correct answer, and we imagine noncompliant respondents respond
to the screener by selecting a response option at random, then αd is equal to one over the
number of response options (e.g., 1/5 if there are five response options). However, if we
are unsure of the value of αd, then the researcher can perform a sensitivity analyses by
considering a range of values for αd. I provide examples of this approach in the applications
section.

Of course, in many cases, the chosen value of αd could be the same for both conditions.
However, if different screener items are used across conditions, then α0 and α1 should be
calibrated separately. Another possibility is that the treatment makes false positives more
or less likely by encouraging noncompliant respondents to pick different response options on
the screener across conditions. For example, maybe the manipulation check screener item
has a popular response option for idiosyncratic reasons (e.g., acquiescence bias) that results
in a pass for one condition but a fail for the other condition. In this case, the researcher
should calibrate α0 and α1 accordingly.

The next two assumptions are optional and can be dropped from the bounding method
if strictly necessary. However, invoking these assumptions typically reduces the width of
the resulting partial identification bounds by a significant degree. Therefore, they are often
worth entertaining.

Assumption A4 (No Differential Measurement Error). The known false positive error rate
αd ∈ [0, 1) in condition d does not vary based on the measured outcome Y .

P [Si(d) = 1 | Ai(d) = 0, Yi(d) = y] = αd. (14)

This assumption says that, in the aggregate, the response behaviors of noncompliant
respondents are not systematic enough to induce a correlation between the screener and the
outcome. This might be violated if, for example, all noncompliant respondents pick the first
(or last) response option and the response options for both screener and outcome are not
presented in a random order.5 Another potential threat to this assumption is if both the
screener and outcome items are prone to acquiescence bias, which could induce a correlation
between the screener and outcome among noncompliant respondents.

5. Many survey instruments already randomize the order of response options to avoid response order
effects.
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Assumption A5 (Compliance Monotonicity). One of the following two conditions holds.
(1) For all respondents, Ai(1) ≥ Ai(0); or (2) for all respondents, Ai(0) ≥ Ai(1).

In practice, the researcher would assume condition (1) when treatment increases the
screener pass rate and condition (2) when the treatment decreases the screener pass rate.6
Effectively, this assumption makes it so that any compositional effects of treatment on com-
pliance is known to be just a fraction E[Ai(1)−Ai(0)] of respondents moving from noncom-
pliance to compliance under condition (1), reversed for condition (2). No other compositional
changes are possible. This assumption parallels the monotonicity assumption of Lee (2009).

Whether Assumption A5 holds might be context dependent. The monotonicity assump-
tion is not always taken for granted (Aronow, Baron, and Pinson 2019). However, in many
survey experiments, the experimental stimuli are probably not strong enough to induce a
large enough change in compliance, much less that required to violate the monotonicity as-
sumption to a significant degree. For example, changing a few key words in the treatment
stimulus probably does not alter attention that much. More generally, A5 is most plausible
when (a) compliance is thought to be largely stable across conditions or (b) it is expected
that the treatment (weakly) increases or decreases compliance broadly among all types of
respondents—as opposed to increasing compliance among some respondents while simulta-
neously decreasing compliance among others. Assumption A5 seems to be least plausible
with the treatment stimulus makes large changes to the length and topic of any text or
prompt that respondents are expected to read.

Finally, for the sake of completeness, there is another optional assumption which assumes
compliance is either measured before treatment assignment or otherwise perfectly stable
across conditions. This assumption is not necessary for the bounding method, but it is
useful for comparing pre- versus post-treatment attention checks.

Assumption A6 (No Compliance or Screener Effects). Both compliance and the screener
are determined and measured before treatment assignment or otherwise do not vary with
treatment. Formally, for all respondents,

Ai(1) = Ai(0), Si(1) = Si(0). (15)

This assumption clearly holds when the screener is measured pre-treatment. It is per-
haps also plausible when the treatment stimulus is nearly unchanged across conditions (e.g.,
changing only one or two words).

3 Sharp bounds via linear programming
To sharply bound the ATAC, I propose a numerical method that calculates the minimum and
maximum data- and assumption-consistent values of the ATAC using convex optimization
techniques. In particular, this section shows that when sampling variability is ignored, the
bounding problem is equivalent to a pair of linear programs. Later sections extend the

6. More precisely, the researcher should account for the potentially different false positive rates. If pd is
the screener pass rate in condition d, then E[Ai(d)] = (pd − αd)/(1 − αd). The researcher should assume
condition (1) if (p1 − α1)/(1− α1) > (p0 − α0)/(1− α0) and condition (2) otherwise.
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optimization method to account for sampling error to produce confidence intervals. Setting
up the problem as an optimization problem requires new notation, but the payoff is that
sharp bounds can be computed quickly with convergence guarantees.

The optimization problem I propose is based on searching over possible values of the joint
distribution of all potential outcomes. In particular, define the 6-tensor π∗ as follows.

π∗(a0, a1, s0, s1, j, k) (16)
def.= P [Ai(0) = a0, Ai(1) = a1, Si(0) = s0, Si(1) = s1, Yi(0) = yj, Yi(1) = yk]. (17)

Of course, if the value of π∗ were known, then the ATAC could be derived from it immediately.
Given it is unknown, I will derive bounds on the ATAC by restricting π∗ with a set of
constraints that corresponding to some subset of assumptions A1-A6.7

Immediately, one can impose the constraint that π∗ ≥ 0 and the sum of π∗ across all
dimensions is one. These constraints are necessary for π∗ to be a valid joint distribution.

Other resitrctions are imposed on the marginal or marginal joint distributions of π∗.
In particular, I use the notation “:” to indicate marginalizing (i.e., summing) over the
corresponding index. For example,

π∗(a0, :, s0, s1, :, k) =
∑

a1∈{0,1}

K∑
j=1

π∗(a0, a1, s0, s1, j, yk) (18)

= P [Ai(0) = a0, Si(0) = s0, Si(1) = s1, Yi(1) = yk]. (19)

Furthermore, let the notation “*” indicate a slice. For example, π∗(a0, ∗, s0, s1, ∗, k) is a 2-by-
K matrix and π∗(:, :, :, :, :, ∗) is a K-vector. These notations are used below to operationalize
the assumptions A2-A6 as constraints on the tensor π∗.

3.1 Constraints from assumption A2
Consider the constraints implied by assumption A2. If treatment is randomly assigned,
then the researcher has a simple random sample of the joint distribution of the untreated
screener and outcome: (Si(0), Yi(0)), namely the control group. Similarly, the treatment
group is a simple random sample of the joint distribution of the treated screener and outcome:
(Si(1), Yi(1)). Using the new notation introduced above, π∗(:, :, ∗, :, ∗, :) corresponds to the
joint distribution of (Si(0), Yi(0)), and π∗(:, :, :, ∗, :, ∗) corresponds to the joint distribution
of (Si(1), Yi(1)). Note that both of these are 2-by-K matrices.

To collect these marginal joint distributions, define the reduced form parameter µ∗, a
function of π∗, as follows

µ∗ =
[
vec(π∗(:, :, ∗, :, ∗, :))
vec(π∗(:, :, :, ∗, :, ∗))

]
, (20)

where vec(M) denotes the vector formed by stacking the columns of the matrix M . By
constraining µ based on the observable survey experimental data, one effectively constrains
the possible values of π∗.

7. Assumption A1 is required to even define π∗.
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To simplify the rest of this section, I temporarily assume that the value of µ∗ is known
and observed by the researcher. In the following section, I explain how to estimate µ∗ and
incorporate estimation error into bounding the ATAC by generating a confidence interval.
With known µ∗, the sharp bounds can be understood as the population partial identification
bounds for the ATAC—analogous to a population parameter in point estimation theory.

3.2 Constraints from assumptions A3-A4
Assumption A3 says that there are no false negatives and that the false positive rates in
each condition are known. Assumption A4 is a stronger version of A3 that is similarly
operationalized.

If there are no false negatives, then all respondents with Ai(d) = 1 must satisfy Si(d) = 1.
By definition of π∗ it follows that

P [Si(0) = 1 | Ai(0) = 1] = P [Ai(0) = 1, Si(0) = 1]
P [Ai(0) = 1] = π∗(1, :, 1, :, :, :)

π∗(1, :, :, :, :, :) = 1 (21)

P [Si(1) = 1 | Ai(1) = 1] = P [Ai(1) = 1, Si(1) = 1]
P [Ai(1) = 1] = π∗(:, 1, :, 1, :, :)

π∗(:, 1, :, :, :, :) = 1. (22)

Note that these are linear constraints on π∗ since they are equivalent to specifying π∗(1, :
, 1, :, :, :) = π∗(1, :, :, :, :, :) and π∗(:, 1, :, 1, :, :) = π∗(:, 1, :, :, :, :).

The second component of assumption A3 is that the false positive rates are known, with
values α0 and α1 in the control and treatment conditions, respectively. This implies that

P [Si(0) = 1 | Ai(0) = 0] = P [Ai(0) = 0, Si(0) = 1]
P [Ai(0) = 0] (23)

= π∗(0, :, 1, :, :, :)
π∗(0, :, :, :, :, :) = α0 (24)

P [Si(1) = 1 | Ai(1) = 0] = P [Ai(1) = 0, Si(1) = 1]
P [Ai(1) = 0] (25)

= π∗(:, 0, :, 1, :, :)
π∗(:, 0, :, :, :, :) = α1. (26)

These are equivalent to the linear constraints π∗(0, :, 1, :, :, :) = α0π
∗(0, :, :, :, :, :) and π∗(:, 0, :

, :, :, :) = α1π
∗(:, 0, :, 1, :, :).

Assumption A4 is a stronger version of Assumption A3 that further conditions on Yi(d).
This is equivalent to the following K pairs of constraints: for each value of k ∈ {1, . . . , K},

P [Si(0) = 1 | Ai(0) = 0, Yi(0) = yk] =
P [Ai(0) = 0, Si(0) = 1, Yi(0) = k]

P [Ai(0) = 0, Yi(0) = yk]
(27)

= π∗(0, :, 1, :, k, :)
π∗(0, :, :, :, k, :) = α0 (28)

P [Si(1) = 1 | Ai(1) = 0, Yi(1) = yk] =
P [Ai(1) = 0, Si(1) = 1, Yi(1) = yk]

P [Ai(1) = 0, Yi(1) = yk]
(29)

= π∗(:, 0, :, 1, :, k)
π∗(:, 0, :, :, :, k) = α1. (30)
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3.3 Constraints from assumptions A5-A6
Assumption A5 constrains the joint distribution of (Ai(0), Ai(1)), which is a marginal joint
distribution of π∗. Assumption A6 is a stronger version of A5 that includes both versions of
A5.

Assumption A5, compliance monotonicity, is equivalent to the condition that there are
no respondents who violate monotonicity. In particular, if version A5(1) is assumed and
Ai(1) ≥ Ai(0), then

P [Ai(0) = 1, Ai(1) = 0] = π∗(1, 0, :, :, :, :) = 0. (31)

Alternatively, if version A5(2) is assumed and Ai(0) ≤ Ai(1), then

P [Ai(0) = 0, Ai(1) = 1] = π∗(0, 1, :, :, :, :) = 0. (32)

Assumption A6, which stipulates Ai(0) = Ai(1), is equivalent to both version A5(1) and
A5(2) holding simultaneously since that imposes Ai(0) = Ai(1) with probability one.

3.4 Specifying the objective function
To finish the task of bounding the ATAC, one needs to specify the ATAC as a function of
π∗ and then minimize/maximize this function with respect to the constraints.

In particular, the ATAC can be expressed as a function of π∗ as follows.

ATAC = E[Yi(1)− Yi(0) | Ai(1) = 1, Ai(0) = 1] (33)
= E[Yi(1) | Ai(1) = 1, Ai(0) = 1]− E[Yi(0) | Ai(1) = 1, Ai(0) = 1] (34)

=
K∑
k=1

yk(P [Yi(1) = k | Ai(1) = 1, Ai(0) = 1]− P [Yi(0) = k | Ai(1) = 1, Ai(0) = 1])

(35)

=
K∑
k=1

yk
π∗(1, 1, :, :, :, k)− π∗(1, 1, :, :, k, :)

π∗(1, 1, :, :, :, :) . (36)

To define the objective function for optimization, this expression is rewritten as a function
of a candidate value of π, namely

τ(π) =
K∑
k=1

yk
π(1, 1, :, :, :, k)− π(1, 1, :, :, k, :)

π(1, 1, :, :, :, :) . (37)

Note that ATAC = τ(π∗). Critically, this objective function τ(π) is a linear-fractional
function of π and can be converted into a linear objective function for the optimization
problems considered in this paper. This will enable convex optimization methods, namely
linear and second-order cone programming, even though τ(π) is not convex.
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3.5 Bounding the ATAC
Conceptually, producing sharp bounds for the ATAC is straightforward. The goal is to
find the minimum and maximum values of the objective function τ(π) where the input π is
compatible with both the researcher’s assumptions and the observable-data distribution µ∗.

To limit the search to compatible values of π, let F (µ) denote the feasible set of π values
that are consistent with the candidate observable-data distribution µ (mandatory assump-
tions A1-A2) and any subset of the optional assumptions A3-A6. Consistency between π and
µ is assessed using equation (20), replacing the true values µ∗ and π∗ with their candidate
values µ and π. Consistency with each optional assumptions is assessed by checking whether
the assumption’s constraints on π∗ are satisfied by the candidate π; see equations (21)-(32).

It is convenient at this point to introduce the functions L and U which respectively give
the lower and upper bound on the ATAC consistent with the candidate value of µ.

L(µ) = min{τ(π) : π ∈ F (µ)} (38)
U(µ) = max{τ(π) : π ∈ F (µ)}. (39)

Note that L and U are well-defined when the feasible set F (µ) is nonempty since F (µ) is
compact and τ(π) is continuous and bounded for π ∈ F (µ).8 It follows that, by definition,
the left endpoint L∗ = L(µ∗) and right endpoint U∗ = U(µ∗) form the tightest bound [L∗, U∗]
on the ATAC consistent with both µ∗ and the researcher’s assumptions. That is, [L∗, U∗] are
the population partial identification bounds on the ATAC. The bounds are sharp in the sense
that they cannot be tighter while still containing all values of the ATAC that are consistent
with µ∗ and the researcher’s assumptions.

Of course, the functions L(µ) and U(µ) are only useful in practice if they can be calcu-
lated. The following result shows that this can be done using fast computational methods.

Theorem 1. Calculating either L(µ) or U(µ) is equivalent to a linear program.

See proof on page 22. Since membership in the feasible set π ∈ F (µ) is equivalent to
just a series of linear constraints on π, the crux of the proof is showing how to transform
the objective function τ(π) into a linear objective function using the Charnes and Cooper
(1962) transformation.

The payoff of Theorem 1 is that the functions L(µ) and U(µ) can be calculated quickly
and reliably using standard computational methods. Critically, they can be solved with
interior point methods that have convergence properties to the global minimum/maximum
similar to Newton’s method (Boyd and Vandenberghe 2004). There are multiple software
packages that can be used to calculate L(µ) and U(µ) nearly instantly. In the empirical
applications, I use the CVXR package in the R programming language (Fu, Narasimhan, and
Boyd 2017). Calculating both L(µ) and U(µ) this way takes less than a second. To enable
others to use the proposed method, I intend to make software that implements the method
publicly available in the form of an R package.

8. In practice, the optimization algorithm will simply inform the researcher if the feasible set F (µ) is
empty.
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4 Confidence intervals
Theorem 1 shows that the functions L(µ) and U(µ) can be calculated quickly and reliably.
However, these functions are only relevant if the researcher knows the true value of µ∗.
In practice, the researcher estimates the observable-data distribution µ∗ from the sample
{(Di, Si, Yi)}ni=1 with error. This section introduces a method for generating asymptotically
valid pointwise confidence intervals for the ATAC that account for both the lack of iden-
tifiability and sampling error. The proposed confidence intervals can be computed using
second-order cone programming, which has similar performance to linear programming in
this setting.

4.1 Proposing a confidence interval
My approach is based on searching over plausible µ∗ values using a confidence region for µ∗

whose volume depends on the desired coverage rate γ (e.g., γ = .95 for a 95% confidence
interval).

The center of this confidence region is the standard method-of-moments estimator µ̂.
Recall the i.i.d. assumption introduced at the start of the model exposition. Suppose n1 =∑n

i=1Di units are assigned to treatment, and n0 = n− n1 units to control. Define q = n1/n
and

µ̂0
sy = n−1

n∑
i=1

(1−Di)
1− q

I[Si = s, Yi = y] (40)

µ̂1
sy = n−1

n∑
i=1

Di

q
I[Si = s, Yi = y] (41)

µ̂ =
[
vec(µ̂0)
vec(µ̂1)

]
, (42)

where I[. . . ] is the usual indicator function. Reweighting the terms in the sums µ̂0
sy and µ̂1

sy

means that µ̂ is consistent for µ∗ by the law of large numbers. Furthermore, by the central
limit theorem, it follows that

√
n(µ̂− µ∗)⇝ N (0,Σ), (43)

where ⇝ denotes convergence in distribution as the sample size tends to infinity and N
denotes the (multivariate) normal distribution. It is well known that the estimator Σ̂ =
diag(µ̂)− µ̂µ̂T is consistent for Σ as n → ∞.

To specify the confidence region conveniently for the optimization problem, I use the
square root of Σ, denoted Ψ. Without loss of generality, one can write Σ = QDQ′ where D
is a diagonal matrix (of eigenvalues) and Q is an orthogonal matrix (of eigenvectors). The
matrix square root Ψ is defined as QD

1
2Q′, which guarantees that Ψ2 = Σ. Similarly, define

its (consistent) estimator Ψ̂ as the square root of the estimator Σ̂.9

9. Due to numerical instability, one or more diagonal elements of D̂ might be within machine precision of
zero but negative. To correct for this, I set D̂1/2

ii = max(0, D̂ii)1/2, which means Ψ̂ is the matrix square root
of the positive semidefinite matrix which is closest to Σ̂ in spectral norm.
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Finally, I construct the confidence region for µ∗ based on a radius r ≥ 0, to be calibrated
based on γ. The confidence region is given by the set{

µ̂+ n− 1
2 Ψ̂z : ∥z∥ ≤ r

}
. (44)

The radius r controls how often, asymptotically, the confidence region covers the entire vector
µ∗. Larger values of r lead to a higher coverage rate at the cost of expanding the feasible set
of µ (and thus π) values, resulting in wider bounds and less precise inferences. Therefore,
tuning the value of r is critical.

A seemingly reasonable choice would be to tune r so that the confidence region covers
the entire vector µ∗ with the nominal coverage rate γ of the final ATAC confidence interval
(e.g., a 95% confidence region for µ∗). In this approach, since Σ is rank 4K − 2, the radius
r2 should be set to the γ quantile of the χ2 distribution with 4K − 2 degrees of freedom
(Duarte et al. 2024). For example, if γ = .95 and K = 2, then set r = 3.55. However,
as I show below, this choice of r is far too conservative since the entire vector µ∗ doesn’t
need to be covered for the ultimate goal of covering the unidmensional ATAC (or any other
unidmensional parameter).

Given the L(µ) and U(µ) functions and a radius r ≥ 0, I propose a confidence interval
[L̂r, Ûr] for the ATAC as follows.

L̂r = min
{
L
(
µ̂+ n− 1

2 Ψ̂z
)
: ∥z∥ ≤ r

}
(45)

Ûr = max
{
U
(
µ̂+ n− 1

2 Ψ̂z
)
: ∥z∥ ≤ r

}
(46)

This is simply an extension of the functions L(µ) and U(µ) where µ is required to lie in the
confidence region generated by the radius r.

The following result yields a lower bound on the asymptotic coverage rate of [L̂r, Ûr],
enabling the researcher to tune the radius r accordingly to their desired coverage rate γ.

Theorem 2. Suppose the functions L(µ) and U(µ) are differentiable at µ∗ with gradients
GL, GU satisfying ΨGL ̸= 0, ΨGU ̸= 0. Let Φ−1 denote the quantile function of the standard
normal distribution.

a) If L∗ < U∗, then setting r = Φ−1(γ) for γ ≥ .5 results in

lim
n→∞

P
[
L̂r ≤ ATAC ≤ Ûr

]
≥ γ.

b) If L∗ = U∗, then setting r = Φ−1((1 + γ)/2) results in

lim
n→∞

P
[
L̂r ≤ ATAC ≤ Ûr

]
≥ γ.

See proof on page 22. Requiring L(µ) and U(µ) to be differentiable leads to a unique
delta-method-style result for the estimators L̂r, Ûr.10 The logic of the proof is surprisingly

10. Requiring ΨGL ̸= 0 and ΨGU ̸= 0 allows rules out a presumably obscure edge case—which may not
ever occur—where (L̂0, Û0) converge to (L∗, U∗) even faster than the standard n

1
2 rate. I ignore this case

since it would require higher-order asymptotic theory to characterize the coverage rate.
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general and does not depend on the specifics of L and U except for the differentiability
assumption, suggesting that the result applies to many other optimization-based methods
that meet the condition.

Given this result, one naturally wonders whether the theorem’s assumptions are likely to
hold in practice. We are not flying completely dark: since L(µ) and U(µ) are the solutions
to linear programs, we know that their solutions are obtained at the vertices of the same
convex polytope (i.e., the feasible set). The shape and position of this polytope in space, and
thus its vertices, depend on the argument µ. Therefore, the differentiability assumption is
really a smoothness condition on the vertices of this convex polytope as a function of µ near
µ = µ∗. However, it is presently unclear how one could verify the differentiability condition
in practice.

Additionally, while the cases in Theorem 2 are specified in terms of the unknown values
L∗ and U∗, the researcher can in practice check these conditions by comparing L̂0 and Û0,
obtained by setting r = 0. This is because L∗ = U∗ is equivalent to the ATAC being point
identified, and that is largely dependent on the assumptions determining the feasible set
F (µ) rather than the the value of the observable-data distribution µ∗. For example, the
ATAC is point identified (L∗ = U∗) when α0 = α1 = 0 and A1-A6 are assumed, no matter
the value of µ∗. Otherwise, the ATAC is not point identifiable and thus L∗ < U∗.11

4.2 Calculating the confidence interval
To make this result actionable, I argue that calculating the lower and upper bounds of the
confidence interval [L̂r, Ûr] is, in practice, just as straightforward as calculating the partial
identification region [L∗, U∗] when µ∗ is known. This arugment is predicated on the following
result.

Theorem 3. Calculating either L̂r or Ûr is equivalent to a second-order cone program.

See proof on page 25. The proof relies on the same rescaling technique that I used for
Theorem 1 to transform the objective into a linear function. I then show how to transform
the radius constraint ∥z∥ ≤ r into a second-order cone constraint based on the rescaled
probabilities.

From the analyst’s perspective, Theorem 3 implies that calculating the confidence in-
terval [L̂r, Ûr] is no harder than calculating [L∗, U∗]. Like linear programs, interior point
methods can solve second-order cone programs quickly with convergence guarantees similar
to Newton’s method (Boyd and Vandenberghe 2004). For example, using the CVXR package
in R, I can compute a confidence interval on a standard survey dataset in about a second. I
intend to make this code publicly available in the form of an R package.

5 Applied examples
I apply the proposed method to two example studies. The first example is a reanalysis
of Dancygier and Wiedemann (2024), who examine support for expropriating corporate

11. In practice, the resarcher can always check whether L̂0 = Û0 to test for point identifiability.
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landlords using a survey experiment of German residents (Study 1). The second example is
in progress.

5.1 Study 1
The Dancygier and Wiedemann (2024) survey experiment randomly assigned a 5087 German
resident respondents to one of three treatment conditions and one control condition. For
simplicity, I limit my reanalysis to just the control and one treatment condition (T2: Finan-
cialization), hereafter “the treatment condition”. Respondents in the control condition were
asked to read a vignette about the health benefits of eating broccoli. Meanwhile, respondents
in the treatment condition instead read a vignette about how large real estate companies
have are increasingly buying apartments in German cities as investments motivated entirely
by profit. See Dancygier and Wiedemann (2024) for the full text of each vignette. After
reading either vignette, respondents were asked to indicate their support for “the idea of ex-
propriating large real estate companies in exchange for compensation and transferring them
into public ownership,” with the response coded as a binary outcome variable (1 = supports
the policy, 0 = otherwise).

In line with the authors’ expectations, the difference-in-means suggests that the treatment
condition increased support for expropriating corporate landlords by about 9 percentage
points (from 60 to 69 percentage points). However, it remains somewhat unclear how much of
this difference can be attributed to the authors’ manipulation of the content of the vignettes,
for the reasons articulated above.

To gauage whether respondents were actually exposed to the information contained in
the treatment, the authors asked respondents to complete a manipulation check. In particu-
lar, respondents were required to indicate what information they had been exposed to in the
vignette.12 Respondents successfully passed the manipulation check if they selected the cor-
rect response option out of the four that were available.13 Additionally, before administering
the treatment, the authors measured a pre-treatment attention check for all responsdents. I
limit my reanalysis to respondents who passed this pre-treatment attention check (n0 = 860,
n1 = 920).

Taking a difference in means approach implies that the treatment increased aggregate
support for expropriation but also decreased aggregate compliance. In terms of the outcome,
the average support for expropriation in the treatment group was 69% versus 60% in the
control group (p < .05). Meanwhile, about 78% respondents passed the manipulation check
in the control condition, and 74% passed it in the treatment condition (p < .05). This slight
decrease in compliance is not surprising given the treatment vignette is slightly more com-
plex and the manipulation check is probably easier for respondents in the control condition

12. The authors kindly shared the details of the manipulation check with me in a separate correspondence.
The manipulation check prompt, in German: “Wenn Sie jetzt an die Aussage zurückdenken, die Sie auf der
vorherigen Seite gelesen haben, welche haben Sie gesehen? Bitte markieren Sie alle Aussagen, an die Sie sich
erinnern.”
13. Respondents in the control condition passed if they selected “Brokkoli ist ein gesundes Lebensmittel.”

Respondents in the treatment condition passed if they selected “Konzerne kaufen Wohnungen in deutschen
Städten als Spekulationsinstrumente.” The other two response options were “Umweltverschmutzung ist ein
Problem.” and “Mieten in deutschen Städten steigen.”
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given the manipulation check only has one Broccoli-related response option. In contrast,
the treatment vignette has slightly more complex information and the manipulation check
has two housing-related response options. I note that there is still a significant number of
respondents who failed the manipulation check in the survey experiment (at least 30% in
each condition), implying that noncompliance remains an experimental concern even after
applying a pre-treatment screener.

What then is the effect of the treatment among respondents who are compliant in both
conditions, the ATAC? As a baseline estimate, the difference-in-means among those who
pass the screener (DiMS) is estimated at 13 (SE = 0.03, p < .05) percentage points. How-
ever, this estimator could be biased by both principal strata misclassification and screener
measurement error. To address these concerns, I apply the proposed method to construct
sharp bounds on the ATAC. I consider different types of bounds, each different in which
subset of assumptions A1-A6 are assumed.

Table 1 reports the bounding results. For six combination of assumptions, including the
Lee (2009) bounds which are a special case of the proposed method with for assumptions
A1-A5 and α = 0.14 The estimated bounds (EB) refer to [L̂0, Û0], or a confidence interval
with radius r = 0. The estimated bounds are effectively point estimates of the population
partial identification bounds [L∗, U∗]. The confidence intervals (CI) are constructed using
the radius prescribed by Theorem 2 with r = 1.64. Except for the Lee (2009) bounds, all
bounds are estimated assuming α0 = α1 = α = .25 given the manipulation check has one
correct response option and three incorrect response options.

Table 1: ATAC bounds under various assumptions (Study 1)

Type Assumptions α EB Lower EB Upper CI Lower CI Upper
I A1-A3 .25 -.57 .87 -.66 .99
II A1-A4 .25 -.48 .8 -.55 .91
III A1-A3, A5 .25 -.024 .3 -.093 .36
IV A1-A5 .25 .097 .18 .032 .24
Lee (2009) A1-A5 0 .094 .15 .043 .2
V A1-A6 .25 ∅ ∅ ∅ ∅

Note: EB = estimated bounds. CI = confidence interval. The ∅ indicates that the bounds are
infeasible given the assumptions.

Looking at Table 1, we see that the estimated bounds and confidence intervals become
progresively tighter as more assumptions are imposed. This is not surprising, but it is inter-
esting to note which assumptions appear to be most consequential. In particular, compliance
monotonicity (A5) appears to be the most impactful assumption, reducing the bound width
by at least half (Type II to Type IV). Additionally, differential measurement error (A4) is
consequential in combination with compliance monotonicity (A5); together they exclude 0
from both the EB and CI bounds. Note that both the estimated bounds for Type IV and

14. I verified that the proposed method returns the same estimated bounds and 95% confidence interval as
the leebounds module in Stata (Tauchmann 2014).
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Lee (2009) just barely rule out the conventional 9 percentage-point ATE estimate (which
ignores the screener).

Additionally, note that the Type V bounds are infeasible, and thus cannot be computed,
given the addition of the fixed compliance assumption (A6). This is expected given the
modest but significant difference in screener pass rates between the two conditions. The data
indicate that some respondents, although perhaps only a few, violate the fixed compliance
assumption.

Which ATAC bounds are most credible? Naturally, the researcher wants the tightest
bounds that don’t require any untenable assumptions. Which assumptions are tenable de-
pends on the case. Since the Type V bounds are infeasible, I can confidently rule out
assumption A6. Beyond A6, assumption A3-A4 might be controversial if only because I
have asserted a false positive rate of .25, but I perform a sensitivity analysis below to exam-
ine the robustness to the specific false positive rate. Additionally, assumption A4 could be
controversial if the screener and outcome response options were not presented in any kind
of randomized order—since a fixed response order could induce a conditional correlation
between the outcome Y and screener S among noncompliant respondents. But, since it is
common practice, one assumes that the authors preempted this concern by randomizing the
order of response options.

Given the treatment appears to decrease compliance, assumption A5 in this study stip-
ulates that there is no respondent whose compliance was increased by the treatment. This
is perhaps not exactly true for every respondent, but perhaps it holds approximately, with
very few respondents (say, <1%) in violation. A significant violation of A5 would require
enough respondents to become noticeably more engaged when tasked to read about the fi-
nancialization of the urban housing supply. I am therefore skeptical that A5 is violated by
a meaningful number of respondents.

Consider assumptions A3-A4 again. To gauge how sensitive the estimated bounds and
confidence intervals are to the assumed false positive rate α, I vary the assumed value of α
from 0 to 1/3 in Figure 1 for the Type IV bounds. The estimated bounds are represented
by the dashed lines, and the confidence intervals are represented by the solid lines. On the
horizontal axis, I have indicated the false positive rate α values .25 (=1/4), and .33 (=1/3),
and .5 (1=/2). The value α = .33 is a conceptually interesting landmark because it is the
value of α consistent with noncompliant respondents being able to perfectly rule out one
incorrect repsonse option from the manipulation check, perhaps because it is implausible,
and then they selected randomly from the remaining options. Similarly, the α = .5 landmark
is noted because it assumes noncompliant respondents can rule out two incorrect response
options.15 Note that, in the special case where α = 0, the bounds are exactly equal to the
Lee (2009) bounds.

15. By definition, being able to rule out the remaining incorrect response option would mean that a re-
spondent is compliant.

18



Figure 1: Sensitivity analysis for type IV ATAC bounds (Study 1)
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Looking at Figure 1, one observes that the bounds become, unsuprisingly, wider as the
assumed false positive rate α increases. That is, the bounds become wider with more mea-
surement error. However, this width increase is asymmetrical: the upper estimated bound
increases at a faster rate than the lower estimated bound, implying that a higher false pos-
itive rate is consistent with higher values of the ATAC than are the Lee (2009) bounds.16
Somewhere before α = .5, the confidence interval starts to include 0, which would be consis-
tent with a null effect among the always-compliant. However, such a value of α assumes that
most noncompliant respondents can rule out two incorrect response options, which seems
implausible—perhaps some can, but not most. At best, respondents in the treatment condi-
tion might be able to quickly rule out the incorrect response option that mentions broccoli,
but that still only implies that α1 = .33.17 The qualitative conclusion that the financializa-
tion vignette increased support for expropriation is not sensitive to varying α in the range
[.25, .33].

6 Conclusion
In this paper, I have introduced a novel method for bounding the average treatment ef-
fect among always-compliant respondents (ATAC) in survey experiments with manipulation
checks. Critically, these manipulation checks are prone to survey measurement error, just like
any other construct measured with surveys. By leveraging convex optimization techniques,
I have shown that the bounding problem can be formulated as a pair of linear programs,

16. In this case, the lower estimated bound also increases, but at a much slower rate.
17. If α1 = .33 but α0 = .25, then the estimated bounds are [0.062, 0.22] and the confidence interval is

[−0.012, 0.29].
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allowing for fast and reliable computation of sharp bounds. Additionally, I have extended
the method to account for sampling variability, providing asymptotically valid confidence
intervals for the ATAC using second-order cone programming. The proposed method is flex-
ible, allowing researchers to include different sets of assumptions about the data-generating
process.

To solve the overcoverage problem of existing optimization-based methos (Duarte et
al. 2024), I derived the asymptotic coverage rate of the proposed confidence intervals. The
proof is sufficiently general to apply to any optimization-based method that satisfies the
assumptions of Theorem 2. This result allows researchers to choose a radius for optimization-
based confidence intervals that achieves a desired asymptotic coverage rate.

Finally, I have demonstrated the method’s utility with a reanalysis of Dancygier and
Wiedemann (2024). I showed which assumptions are most consequential for bounding the
ATAC and how (in)sensitive the qualitative conclusions are in that case to the assumed false
positive rate of the manipulation check. Of course, in general, other survey experimental
results may not be as robust.

A promising avenue for future work is in generating different types of assumptions which
can be seen as substitutes for compliance monotonicity. In particular, one promising ap-
proach would be to restrict the degree to which principal strata are correlated with the
potential outcomes, drawing on the insights of Lemma 1. This would allow for the re-
searcher to limit the data-generating process, and thus achieve tighter bounds, without
requiring the brittle assumption of compliance monotonicity. If this new assumption can
be operationalized as a convex constraint, then the proposed optimization-based approach
can be immediately extended to account for the new assumption and compute more credible
bounds.
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A Proofs
Lemma 1.

DiMS− ATAC = B1 −B2 +B3 −B4, (5)

where the bias terms are defined as

B1 =
P [Ai(0) = 0, Ai(1) = 1]

P [Ai(0) = 0, Ai(1) = 1] + P [Ai(0) = 1, Ai(1) = 1] (6)

× (E[Yi(1) | Ai(0) = 0, Ai(1) = 1]− E[Yi(1) | Ai(0) = 1, Ai(1) = 1]) (7)

B2 =
P [Ai(0) = 1, Ai(1) = 0]

P [Ai(0) = 1, Ai(1) = 0] + P [Ai(0) = 1, Ai(1) = 1] (8)

× (E[Yi(0) | Ai(0) = 1, Ai(1) = 0]− E[Yi(0) | Ai(0) = 1, Ai(1) = 1]) (9)
B3 = E[Yi(1) | Si(1) = 1]− E[Yi(1) | Ai(1) = 1] (10)
B4 = E[Yi(0) | Si(0) = 1]− E[Yi(0) | Ai(0) = 1]. (11)

Proof of Lemma 1. XYZ

Theorem 1. Calculating either L(µ) or U(µ) is equivalent to a linear program.

Proof of Theorem 1. XYZ

Theorem 2. Suppose the functions L(µ) and U(µ) are differentiable at µ∗ with gradients
GL, GU satisfying ΨGL ̸= 0, ΨGU ̸= 0. Let Φ−1 denote the quantile function of the standard
normal distribution.

a) If L∗ < U∗, then setting r = Φ−1(γ) for γ ≥ .5 results in

lim
n→∞

P
[
L̂r ≤ ATAC ≤ Ûr

]
≥ γ.

b) If L∗ = U∗, then setting r = Φ−1((1 + γ)/2) results in

lim
n→∞

P
[
L̂r ≤ ATAC ≤ Ûr

]
≥ γ.

Proof of Theorem 2. Let Tn = µ̂ − µ∗ = Op(n− 1
2 ) and suppose W ∼ N (0, I) where I is the

appropriate identity matrix. From the central limit theorem, it follows that Tn = n− 1
2ΨW +

Op(n− 1
2 ). Additionally, let Vn = n− 1

2 Ψ̂ = Op(n− 1
2 ).

Define the remainder function R(h) as

R(h) = L(µ∗ + h)− L∗ −G′
Lh

∥h∥
(47)

when h ̸= 0 and R(0) = 0. Recall that L∗ = L(µ∗). Because L is differentiable at µ∗, we
know that limh→0 |R(h)| = 0. Rearranging, I can write for any h

L(µ∗ + h) = L∗ +G′
Lh+ ∥h∥R(h). (48)
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Plugging in h = Tn + Vnz yields

L(µ̂+ Vnz) = L∗ +G′
LTn +G′

LVnz +Rn(z), (49)

where Rn(z) = ∥Tn + Vnz∥R(Tn + Vnz) is a stochastic process indexed by z.
To obtain L̂r, I minimize both sides of the equation over z ∈ Br = {z : ∥z∥ ≤ r}, yielding

L̂r = inf
z∈Br

L(µ̂+ Vnz) (50)

= L∗ +G′
LTn + inf

z∈Br

[G′
LVnz +Rn(z)]. (51)

Note that the first two terms on the right-hand side do not depend on z whatsoever.
Because infx f(x) + infx g(x) ≤ infx(f(x) + g(x)) ≤ infx f(x) + supx g(x), it follows that

−r∥V ′
nGL∥+ inf

z∈Br

Rn(z) ≤ inf
z∈Br

[G′
LVnz +Rn(z)] ≤ −r∥V ′

nGL∥+ sup
z∈Br

Rn(z), (52)

where I use the fact that infz∈Br v
′z = −r∥v∥. Consequently,

inf
z∈Br

Rn(z) ≤ L̂r − L∗ −G′
LTn + r∥V ′

nGL∥ ≤ sup
z∈Br

Rn(z). (53)

I combine this result with the identities supx f(x) ≤ supx |f(x)| and infx f(x) ≥ − supx |f(x)|
to obtain the finite-sample bound∣∣∣L̂r − L∗ −G′

LTn + r∥V ′
nGL∥

∣∣∣ ≤ sup
z∈Br

|Rn(z)| = sup
z∈Br

∥Tn + Vnz∥|R(Tn + Vnz)|. (54)

For all z ∈ Br = {z : ∥z∥ ≤ r}, observe that

∥Tn + Vnz∥ ≤ ∥Tn∥+ ∥Vn∥∥z∥ ≤ ∥Tn∥+ ∥Vn∥r = Op(n− 1
2 ) = Op(1). (55)

By implication, supz∈Br
∥Tn + Vnz∥ = Op(n− 1

2 ) = Op(1). Thus, I obtain the intermediate
bound ∣∣∣L̂r − L∗ −G′

LTn + r∥V ′
nGL∥

∣∣∣ ≤ (∥Tn∥+ ∥Vn∥r) sup
z∈Br

|R(Tn + Vnz)|. (56)

Next, choose any ϵ and η. Because limh→0 |R(h)| = 0, one can choose δ such that ∥h∥ < δ
implies that |R(h)| < η. Because supz∈Br

∥Tn + Vnz∥ = Op(1), one can choose N such that
P (supz∈Br

∥Tn + Vnz∥ > δ) < ϵ for all n ≥ N . By implication, P (supz∈Br
|R(Tn + Vnz)| >

η) < ϵ for all n ≥ N . Thus, supz∈Br
|R(Tn + Vnz)| = Op(1).

Taken together, I conclude that

(∥Tn∥+ ∥Vn∥r) sup
z∈Br

|R(Tn + Vnz)| = Op(n− 1
2 )Op(1) = Op(n− 1

2 ). (57)

Therefore, by definition of Op,

L̂r = L∗ +G′
LTn − r∥V ′

nGL∥+ Op(n− 1
2 ). (58)
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Because Tn = n− 1
2ΨW + Op(n− 1

2 ) and Ψ̂ = Ψ + Op(1), this further simplifies to

L̂r = L∗ + n− 1
2G′

LΨW − n− 1
2 r∥ΨGL∥+ Op(n− 1

2 ), (59)
=⇒

√
n(L̂r − L∗) = G′

LΨW − r∥ΨGL∥+ Op(1). (60)

This establishes a delta-method-style result for L̂r, although note that the mean of the
asymptotic normal distribution has been shifted by −r standard deviations. For brevity, I
omit the symmetric proof for Ûr that establishes

√
n(Ûr − U∗) = G′

UΨW + r∥ΨGU∥+ Op(1). (61)

To simplify the presentation below, I introduce additional notation. Define, σL =
∥ΨGL∥ > 0 and σU = ∥ΨGU∥ > 0 (both positive by assumption). Then, define gL = ΨGL/σL

and gU = ΨGU/σU . Note that gL and gU are both unit vectors. Using this new notation,
√
n(L̂r − L∗)/σL = g′LW − r + Op(1). (62)

√
n(Ûr − U∗)/σU = g′UW + r + Op(1). (63)

Observe that both g′LW and g′UW are standard normal since g′LIgL = 1 and g′UIgU = 1.
To calculate the coverage rates, take τ ∈ [L∗, U∗].

L̂r ≤ τ ⇐⇒ L̂r − L∗ ≤ (τ − L∗) (64)

⇐⇒
√
n(L̂r − L∗)

σL
≤

√
n(τ − L∗)

σL
(65)

⇐⇒ g′LW ≤
√
n(τ − L∗)

σL
+ r + Op(1). (66)

Similarly,

Ûr ≥ τ ⇐⇒ g′UW ≥ −
√
n(U∗ − τ)

σU
− r + Op(1). (67)

Applying the inclusion-exclusion principle reveals

P (L̂r ≤ τ ≤ Ûr) = P (L̂r ≤ τ) + P (τ ≤ Ûr)− P (L̂r ≤ τ ∪ τ ≤ Ûr) (68)
≥ P (L̂r ≤ τ) + P (τ ≤ Ûr)− 1 (69)

= P

(
g′LW ≤

√
n(τ − L∗)

σL
+ r + Op(1)

)
(70)

+ P

(
g′UW ≥ −

√
n(U∗ − τ)

σU
− r + Op(1)

)
− 1 (71)

= Φ
(√

n(τ − L∗)
σL

+ r

)
+ Φ

(√
n(U∗ − τ)

σU
+ r

)
− 1 + O, (72)

where Φ is the cumulative distribution function of the standard normal.
If L∗ = U∗, then τ = L∗ = U∗ and thus

P (L̂r ≤ τ ≤ Ûr) ≥ 2Φ(r)− 1 + O(1) → 2Φ(r)− 1. (73)

If L∗ < U∗, there are three possibilities.

24



• First, if τ = L∗ < U∗, then

P (L̂r ≤ τ ≤ Ûr) ≥ Φ(r) + Φ
(
O(

√
n) + r

)
− 1 + O(1) → Φ(r). (74)

• Second, if τ = U∗ > L∗, then

P (L̂r ≤ τ ≤ Ûr) ≥ Φ
(
O(

√
n) + r

)
+ Φ(r)− 1 + O(1) → Φ(r). (75)

• Third and finally, if L∗ < τ < U∗, then

P (L̂r ≤ τ ≤ Ûr) ≥ Φ
(
O(

√
n) + r

)
+ Φ

(
O(

√
n) + r

)
− 1 + O(1) → 1. (76)

The proof is complete after recognizing that

2Φ
(
Φ−1((1 + γ)/2)

)
− 1 = γ, Φ

(
Φ−1(γ)

)
= γ. (77)

Theorem 3. Calculating either L̂r or Ûr is equivalent to a second-order cone program.

Proof of Theorem 3. XYZ
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