When Does Ranked-Choice Voting Reduce Polarization?

Yuki Atsusaka¹ Theodore Landsman² ¹University of Houston ²Georgetown University

> Feb. 22, 2025 TexMeth 2025 University of Houston

software: {neodowns}

2nd 3rd 4th 5th Choice Choice Choice Choice Candidate A Candidate B Candidate C Candidate D Candidate E

1st

2nd 3rd 4th 5th Choice Choice Choice Choice Candidate A Candidate B Candidate C Candidate D Candidate E

1st

Number of ballots	Ranking profile
46	(A)
24	(B)
10	(C)
4	(C, B)
2	(E, A)
2	(E, C, A)
3	(E, D, C, A)
6	(D, A)
4	(D, C, A)

International Internatione International International International International

Number of ballots	Ranking profile
46	(A)
24	(B)
10	(C)
4	(C, B)
2	(E, A)
2	(E, C, A)
3	(E, D, C, A)
6	(D, A)
4	(D, C, A)

1st.
2nd
3rd
4th
5th

Candidate A
Image: Choice Choice

Number of ballets	Panking profile
Number of ballots	Ranking prome
46	(A)
24	(B)
10	(C)
4	(C, B)
2	(E, A)
2	(E, C, A)
3	(E, D, C, A)
6	(D, A)
4	(D, C, A)

Candidate A Candidate B Candidate C Candidate D Candidate E C Candidate E

Number of ballots	Ranking profile
46	(A)
24	(B)
10	(C)
4	(C, B)
2	(E, A)
2	(E, C, A)
3	(E, D, C, A)
6	(D, A)
4	(D, C, A)

	Rou	nd 1	Round 2		Round 3		Round 4	
Cand.	Votes	%	Votes	%	Votes	%	Votes	%
А	46	45.5%	48	47.5%	54	53.5%	63	69.2%
В	24	23.8%	24	23.8%	24	23.8%	28	30.8%
С	14	13.9%	16	15.8%	23	22.8%	elimi	nated
D	10	9.9%	13 12.9%		elimi	nated		
E	7	6.9%	eliminated					

	Rou	nd 1	Rou	Round 2		Round 3		Round 4	
Cand.	Votes	%	Votes	%	Votes	%	Votes	%	
А	46	45.5%	48	47.5%	54	53.5%	63	69.2%	
В	24	23.8%	24	23.8%	24	23.8%	28	30.8%	
С	14	13.9%	16	15.8%	23	22.8%	elimi	nated	
D	10	9.9%	13 12.9%		elimi	nated			
E	7	6.9%	eliminated						

1 Count first-choice votes

	Rou	nd 1	Round 2		Round 3		Round 4	
Cand.	Votes	%	Votes	%	Votes	%	Votes	%
А	46	45.5%	48	47.5%	54	53.5%	63	69.2%
В	24	23.8%	24	23.8%	24	23.8%	28	30.8%
С	14	13.9%	16	15.8%	23	22.8%	elimi	nated
D	10	9.9%	13 12.9%		elimi	nated		
E	7	6.9%	eliminated					

- **1** Count first-choice votes
- 2 Eliminate the candidate with fewest votes

	Rou	Round 1		Round 2		Round 3		Round 4	
Cand.	Votes	%	Votes	%	Votes	%	Votes	%	
А	46	45.5%	48	47.5%	54	53.5%	63	69.2%	
В	24	23.8%	24	23.8%	24	23.8%	28	30.8%	
С	14	13.9%	16	15.8%	23	22.8%	elimi	nated	
D	10	9.9%	13	12.9%	2.9% eliminated				
E	7	6.9%	eliminated						

- 1 Count first-choice votes
- 2 Eliminate the candidate with fewest votes
- **3** Transfer votes to the next-preferred candidate

	Rou	nd 1	Rou	nd 2	Round 3		Round 4	
Cand.	Votes	%	Votes	%	Votes	%	Votes	%
А	46	45.5%	48	47.5%	54	53.5%	63	69.2%
В	24	23.8%	24	23.8%	24	23.8%	28	30.8%
С	14	13.9%	16	15.8%	23	22.8%	elimi	nated
D	10	9.9%	13 12.9%		elimi	nated		
E	7	6.9%	eliminated					

- 1 Count first-choice votes
- 2 Eliminate the candidate with fewest votes
- **③** Transfer votes to the next-preferred candidate
- **4** Repeat until the majority winner

Growing adoption of ranked-choice voting (RCV) in the U.S.

• Expectations: RCV does

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)

Growing adoption of ranked-choice voting (RCV) in the U.S.

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)

 \rightarrow RCV requires 50% + 1 votes to win

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"
 - \rightarrow Candidates will avoid extreme positions

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"
 - \rightarrow Candidates will avoid extreme positions
 - Neo-downsian theory: RCV does not always reduce ideological polarization (Fraenkel & Grofman 2004, 2006, 2007)

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"
 - \rightarrow Candidates will avoid extreme positions
 - Neo-downsian theory: RCV does not always reduce ideological polarization (Fraenkel & Grofman 2004, 2006, 2007)
 - Empirically, "little support" and "little scholarly consensus"

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"
 - \rightarrow Candidates will avoid extreme positions
 - Neo-downsian theory: RCV does not always reduce ideological polarization (Fraenkel & Grofman 2004, 2006, 2007)
 - Empirically, "little support" and "little scholarly consensus"
- Our contributions

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"
 - \rightarrow Candidates will avoid extreme positions
 - Neo-downsian theory: RCV does not always reduce ideological polarization (Fraenkel & Grofman 2004, 2006, 2007)
 - Empirically, "little support" and "little scholarly consensus"
- Our contributions
 - Formal model & algorithms to simulate candidate competition in RCV

- Expectations: RCV does
 - Promote moderation in candidate competition (Reilly 2018)
 - Foster voting across ethnic lines (Fraenkel & Grofman 2004)
 - Discourage negative campaign (Kimball & Anthony 2016)
 - "Cure," "save," and "fix" American politics (Advocates)
- However, limited theoretical work on the effect of RCV on polarization (Fraenkel & Grofman 2004)
 - Two competing theoretical camps in comparative politics
 - Vote-pooling theory: RCV reduces co-ethnic voting (Horowitz 1991, Reilly 2001)
 - \rightarrow RCV requires 50% + 1 votes to win
 - \rightarrow Candidates need lower-ranked votes from "other groups"
 - \rightarrow Candidates will avoid extreme positions
 - Neo-downsian theory: RCV does not always reduce ideological polarization (Fraenkel & Grofman 2004, 2006, 2007)
 - Empirically, "little support" and "little scholarly consensus"
- Our contributions

• neodowns::sim_data()

neodowns::sim_data()

4/13

neodowns::neodowns()

neodowns::neodowns()

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

iteration = 10

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

iteration = 20

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

iteration = 40

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

iteration = 50

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

- neodowns::neodowns()
 - Keep going in the same direction, if vote shares increase
 - Turn 180 degrees and pick a new direction, otherwise

iteration = 70

• N voters and J candidates in a district

- N voters and J candidates in a district
- Each voter/candidate belongs to G racial or other groups

- N voters and J candidates in a district
- Each voter/candidate belongs to G racial or other groups
- $x_i = (x_{i,1}, x_{i,2}) \in \mathbb{R}^2$ be voter *i*'s ideal point in the two-dimensional space

- N voters and J candidates in a district
- Each voter/candidate belongs to G racial or other groups
- $x_i = (x_{i,1}, x_{i,2}) \in \mathbb{R}^2$ be voter *i*'s ideal point in the two-dimensional space
- $x_j = (x_{j,1}, x_{j,2}) \in \mathbb{R}^2$ be candidate j's ideal point

$$\underbrace{V_{ij}}_{\text{utility}} = \underbrace{-a_j \|x_i - x_j\|}_{\text{spatial factor}}$$

$$\underbrace{V_{ij}}_{\text{utility}} = \underbrace{-a_j \|x_i - x_j\|}_{\text{spatial factor}} + \underbrace{b_j m_{ij}}_{\text{group factor}}$$

$$\underbrace{V_{ij}}_{\text{utility}} = \underbrace{-a_j \|x_i - x_j\|}_{\text{spatial factor}} + \underbrace{b_j m_{ij}}_{\text{group factor}} + \underbrace{\varepsilon_{ij}}_{\text{random factor}}$$

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

• Utility function (*i*'s utility for candidate *j*)

p_{ij}

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

 $p_{ij} = \mathbb{P}(\text{voter } i \text{ choosing candidate } j)$

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

$$p_{ij} = \mathbb{P}(\text{voter } i \text{ choosing candidate } j)$$
$$= \frac{\exp(V_{ij})}{\sum_{j=1}^{J} \exp(V_{ij})}$$

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

$$p_{ij} = \mathbb{P}(\text{voter } i \text{ choosing candidate } j)$$
$$= \frac{\exp(V_{ij})}{\sum_{j=1}^{J} \exp(V_{ij})}$$

• Voting behavior in RCV

p_{i,ABC}

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

$$p_{ij} = \mathbb{P}(\text{voter } i \text{ choosing candidate } j)$$
$$= \frac{\exp(V_{ij})}{\sum_{j=1}^{J} \exp(V_{ij})}$$

• Voting behavior in RCV

 $p_{i,ABC} = \mathbb{P}(\text{voter } i \text{ ranks } ABC)$

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

$$p_{ij} = \mathbb{P}(\text{voter } i \text{ choosing candidate } j)$$
$$= \frac{\exp(V_{ij})}{\sum_{j=1}^{J} \exp(V_{ij})}$$

• Voting behavior in RCV

 $p_{i,ABC} = \mathbb{P}(\text{voter } i \text{ ranks } ABC)$ $= \prod_{j=1}^{3} \frac{\exp(V_{ij})}{\sum_{j=1}^{3} \exp(V_{ij})}$

• Utility function (*i*'s utility for candidate *j*)

• Voting behavior in FPTP

$$p_{ij} = \mathbb{P}(\text{voter } i \text{ choosing candidate } j)$$
$$= \frac{\exp(V_{ij})}{\sum_{j=1}^{J} \exp(V_{ij})}$$

$$p_{i,ABC} = \mathbb{P}(\text{voter } i \text{ ranks } ABC)$$

$$= \prod_{j=1}^{3} \frac{\exp(V_{ij})}{\sum_{j=1}^{3} \exp(V_{ij})}$$

$$= \underbrace{\exp(V_{iA})}_{\exp(V_{iA}) + \exp(V_{iB}) + \exp(V_{iC})} \underbrace{\exp(V_{iB})}_{p(\text{choose A out of A, B, C)}} \underbrace{\exp(V_{iB}) + \exp(V_{iC})}_{p(\text{choose B out of B, C})} \underbrace{\exp(V_{iC})}_{p(\text{choose C})}$$

• Candidates adjust their spatial positions given voters' ranking probabilities

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)
 - max-2 when RCV (Reilly 2001)

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)
 - max-2 when RCV (Reilly 2001)
 - max-3 when RCV (Horowitz 1991)
- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)
 - max-2 when RCV (Reilly 2001)
 - max-3 when RCV (Horowitz 1991)

✓ Our goal (again): Find the spatial position that maximizes the vote shares under each strategy

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)
 - max-2 when RCV (Reilly 2001)
 - max-3 when RCV (Horowitz 1991)
- ✓ Our goal (again): Find the spatial position that maximizes the vote shares under each strategy
- Note on maximizing the probability of winning

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)
 - max-2 when RCV (Reilly 2001)
 - max-3 when RCV (Horowitz 1991)
- ✓ Our goal (again): Find the spatial position that maximizes the vote shares under each strategy
- ✓ Note on maximizing the probability of winning
 - Electoral margin is nearly impossible to know in RCV (Atsusaka, Valleva, & Vallejo 2024)

- Candidates adjust their spatial positions given voters' ranking probabilities
 - Voters' positions are fixed
 - Goal is to find a set of spatial positions that maximize vote shares
- Maximizing k-th choice ranking probability
 - max-1 when FPTP (Adams, Merill III, & Grofman 2005)
 - max-2 when RCV (Reilly 2001)
 - max-3 when RCV (Horowitz 1991)
- ✓ Our goal (again): Find the spatial position that maximizes the vote shares under each strategy
- ✓ Note on maximizing the probability of winning
 - Electoral margin is nearly impossible to know in RCV (Atsusaka, Valleva, & Vallejo 2024)
 - Choice/ranking probability as a useful heuristic

• sim_data(): simulate electoral data

- sim_data(): simulate electoral data
 - Input: electoral contexts

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data
 - Output: Markov chains of ranking probabilities and candidate positions

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data
 - Output: Markov chains of ranking probabilities and candidate positions
 - Choose the same angle/direction θ if average ranking probabilities increase or pick a new direction otherwise

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data
 - Output: Markov chains of ranking probabilities and candidate positions
 - Choose the same angle/direction θ if average ranking probabilities increase or pick a new direction otherwise
- extract_x(): extract any quantities from Markov chains

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data
 - Output: Markov chains of ranking probabilities and candidate positions
 - Choose the same angle/direction θ if average ranking probabilities increase or pick a new direction otherwise
- extract_x(): extract any quantities from Markov chains
 - Candidate level: expected vote/seat shares, spatial positions

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data
 - Output: Markov chains of ranking probabilities and candidate positions
 - Choose the same angle/direction θ if average ranking probabilities increase or pick a new direction otherwise
- extract_x(): extract any quantities from Markov chains
 - Candidate level: expected vote/seat shares, spatial positions
 - Voter level: expected vote choices, candidate rankings

- sim_data(): simulate electoral data
 - Input: electoral contexts
 - Output: voter ideologies and candidate initial positions
- neodowns(): simulate candidates updating their spatial positions
 - Input: simulated data
 - Output: Markov chains of ranking probabilities and candidate positions
 - Choose the same angle/direction θ if average ranking probabilities increase or pick a new direction otherwise
- extract_x(): extract any quantities from Markov chains
 - Candidate level: expected vote/seat shares, spatial positions
 - Voter level: expected vote choices, candidate rankings
 - Election level: # rounds, Condorcet winner

• Target quantities

- Target quantities
 - Change in the level of ideological polarization (neodownsian)

- Target quantities
 - Change in the level of ideological polarization (neodownsian)

- Target quantities
 - Change in the level of ideological polarization (neodownsian)
 - Change in the level of co-ethnic voting (vote-pooling)

- Target quantities
 - Change in the level of ideological polarization (neodownsian)
 - Change in the level of co-ethnic voting (vote-pooling)

- max1 - max2 - max3

Ideological polarization

• Essential roles of candidate incentives and voting behavior

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - · Candidates only appeal to their first-choice constituents

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
 - Redistricting influences the effect of RCV

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
 - Redistricting influences the effect of RCV
 - Must examine when RCV reduces polarization

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - · Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
 - Redistricting influences the effect of RCV
 - Must examine when RCV reduces polarization
- Multi-methods for RCV research

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
 - Redistricting influences the effect of RCV
 - Must examine when RCV reduces polarization
- Multi-methods for RCV research
 - Computational/algorithmic (Atsusaka & Landsman)

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - · Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
 - Redistricting influences the effect of RCV
 - Must examine when RCV reduces polarization
- Multi-methods for RCV research
 - Computational/algorithmic (Atsusaka & Landsman)
 - Empirical (McDaniel 2018)

- Essential roles of candidate incentives and voting behavior
 - Simply adopting RCV does not bring moderation
 - RCV becomes FPTP when
 - Only two candidates (23% of American RCV)
 - Voters rank a single candidate (46% of voters, on average)
 - Candidates only appeal to their first-choice constituents
 - Requiring voters to rank multiple candidates
 - Voter education
- Contextual effects of RCV
 - No moderation occurs if co-ethnic voting dominates
 - Redistricting influences the effect of RCV
 - Must examine when RCV reduces polarization
- Multi-methods for RCV research
 - Computational/algorithmic (Atsusaka & Landsman)
 - Empirical (McDaniel 2018)
 - Formal (Buisseret & Prato 2023)