

Department of Mathematics

Summer 2025

Disclaimer: Be advised that some information on this page may not be current due to course scheduling changes. Please view either the UH Class Schedule page (https://www.uh.edu/academics/courses-enrollment/class-schedule/) or your Class Schedule in myUH (https://accessuh.uh.edu/login.php) for the most current/updated information. Click this link to access the Academic Calendar (<a href="https://publications.uh.edu/content.php?catoid=55&navoid=20834).

<u>University of Houston Textbook Adoption login (https://uh.edu/af-auxiliary-services/campus-store/faculty-course-materials-adoptions/)</u>

Graduate Courses - SUMMER 2025

SENIOR UNDERGRADUATE COURSES

Course/Section	Class #	Course Title & Session	Course Day & Time	Rm #	Instructor
Math 4322	13568	Intro. to Data Science & Machine Learning (session #3)	Online (Asynchronous/On campus exams)	N/A	C. Poliak
Math 4377/Math 6308	10089	Advanced Linear Algebra I (Session #2)	MTWThF, 10AM—Noon	S 116	M. Perepelitsa
Math 4378 / Math 6309	10464	Advanced Linear Algebra II (Session #4)	MTWThF, 2—4PM	SEC 205	M. Papadakis
<u>Math 4389</u>	14595	Survey of Undergraduate Math (Session #4)	MTWThF, Noon—2PM	AH 301	D. Blecher

GRADUATE ONLINE COURSES

Course/Section	Class #	Course Title	Course Day & Time	Instructor
Math 5341-01	11764	Mathematical Modeling (Session #2)	(online) Asynchronous - On Campus Exams	J. He
Math 5383-02	14812	Number Theory (Session #2)	(online) Asynchronous - On Campus Exams	M. Ru
Math 5389-01	10933	Survey of Mathematics (Session #2)	(online) Asynchronous - On Campus Exams	G. Etgen

GRADUATE COURSES

Course/Section	Class #	Course Title	Course Day & Time	Rm #	Instructor
Math 6308-01	12131	Advanced Linear Algebra I (Session #2)	MTWThF, 10AM—Noon	S 116	M. Perepelitsa
Math 6309-01	12132	Advanced Linear Algebra II (Session #4)	MTWThF, 2—4PM	SEC 205	M. Papadakis

MSDS GRADUATE COURSES

(MSDS Students Only - Contact <u>Ms. Tierra Kirts (mailto:tskirts@central.uh.edu)</u> for specific class numbers)

Course/Section	Class#	Course Title	Course Day & Time	Rm #	Instructor
<u>Math 6386</u>	not shown to students	Big Data Analytics (Session #3)	F, 3—5PM	ТВА	D. Shastri

Senior Undergraduate Courses

	Math 4322 - Introduction to Data Science and Machine Learning		
Prerequisites:	MATH 3339 or MATH 3349		
	While lecture notes will serve as the main source of material for the course, the		
	following book constitutes a great reference:		
Text(s):	• "An Introduction to Statistical Learning (with applications in R)" by James, Witten et al. ISBN : 978-1461471370		
	• "Neural Networks with R" by G. Ciaburro. ISBN: 978-1788397872		
	Catalog Description: Theory and applications for such statistical learning techniques		
Description:	as linear and logistic regression, classification and regression trees, random forests,		
	neutral networks. Other topics might include: fit quality assessment, model validation,		
	resampling methods. R Statistical programming will be used throughout the course		

$\{ \underline{back\ to\ Senior\ Courses} \} (\underline{https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php\#topugrd})$

	Math 4377 - Advanced Linear Algebra I
Prerequisites:	MATH 2331 and MATH 3325, and three additional hours of 3000-4000 level
	Mathematics.
Toyt(s).	Linear Algebra, 5th Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E.
Text(s):	Spence. ISBN: 9780134860244
	Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2)
	(probably not covered)
	Course Description: The general theory of Vector Spaces and Linear Transformations
Description:	will be developed in an axiomatic fashion. Determinants will be covered to study
	eigenvalues, eigenvectors and diagonalization.
	Grading: There will be three Tests and the Final. I will take the two highest test scores
	(60%) and the mandatory final (40%). Tests and the Final are based on homework
	problems and material covered in class.

Math 4378 - Advanced Linear Algebra II		
Prerequisites:	Math 4377 or Math 6308	
Text(s):	Linear Algebra, 5th edition, by Friedberg, Insel, and Spence, ISBN: 9780134860244	
Description:	The instructor will cover Sections 5-7 of the textbook. Topics include:	
	Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products and Norms,	
	Adjoints of Linear Operators, Normal and Self-Adjoint Operators, Orthogonal and	
	Unitary Operators, Jordan Canonical Form, Minimal Polynomials.	

$\{ \underline{back\ to\ Senior\ Courses} \} (\underline{https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php\#topugrd})$

Math 4389 - Survey of Undergraduate Math		
Prerequisites:	MATH 3330, MATH 3331, MATH 3333, and three hours of 4000-level Mathematics.	
Text(s):	Text(s): Instructors notes	
Description:	A review of some of the most important topics in the undergraduate mathematics curriculum.	

$\{ \underline{\textit{back to top}} \ \underline{\textit{(/nsm/math/graduate/graduate-courses/summer/index.php\#toppage)}} \\$

ONLINE GRADUATE COURSES

MATH 5341 - Mathematical Modeling		
Prerequisites:	Graduate standing. Calculus III and Linear Algebra	
Text(s):	Textbook <i>(free download)</i> : Introduction to Applied Linear Algebra , Boyd and Vandenberghe, Cambridge University Press, 2018	

	Course Platforms: MS Teams and Blackboard.
	Course Technology Requirements: Computer, internet, microphone and webcam.
Description:	Course Overview:vThe course introduces vectors, matrices, and least squares methods, related topics on applied linear algebra that are behind modern data science and other applications, including document classification, prediction model from data, enhanced images, control, state estimation, and portfolio optimization. We will review vectors and matrices in the first two weeks, and then focus on least squares and more advanced examples and applications in the following two and half weeks. Detailed Syllabus (PDF)

{back to Online Courses} (https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php#topgradonline)

MATH 5383 - Number Theory		
Prerequisites:	Graduate standing.	
Text(s):	Instructor's notes	
Description (Catalog):	Divisibility and factorization, linear Diophantine equations, congruences and applications, solving linear congruences, primes of special forms, the Chinese remainder theorem, multiplicative orders, the Euler function, primitive roots, quadratic congruences, representation problems and continued fractions.	

{ <u>back to Online Courses} (https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php#topgradonline)</u>

MATH 5389 - Survey of Mathematics		
Prerequisites:	Graduate standing	
Text(s):	Instructor's notes	
Description:	A review and consolidation of undergraduate courses in linear algebra, differential equations, analysis, probability, and astract algebra. Students may not receive credit for both MATH 4389 and MATH 5389.	

$\{ \underline{\textit{back to Online Courses}} \ \underline{(\text{https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php\#topgradonline})} \\$

MATH 5397 - Selected Topics in Mathematics		
Prerequisites:	Graduate standing	
Text(s):	Instructor's notes	
Description:	TBD	

 $\{ \underline{back\ to\ top} \} \underline{(https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php\#toppage)}.$

GRADUATE COURSES

	MATH 6308 - Advanced Linear Algebra I		
Prerequisites:	Graduate standing . MATH 2331 and MATH 3325, and three additional hours of 3000-4000 level Mathematics.		
Text(s):	Linear Algebra, 5th Edition by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence. ISBN: 9780134860244		
Description:	Syllabus: Chapter 1, Chapter 2, Chapter 3, Chapter 4 (4.1-4.4), Chapter 5 (5.1-5.2) (probably not covered)		
	Course Description: The general theory of Vector Spaces and Linear Transformations will be developed in an axiomatic fashion. Determinants will be covered to study eigenvalues, eigenvectors and diagonalization. Grading: There will be three Tests and the Final. I will take the two highest test scores (60%) and the mandatory final (40%). Tests and the Final are based on homework problems and material covered in class.		

$\{ \underline{back\ to\ Graduate\ Courses}\} \ \underline{(https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php\#topgradonline)} \\$

MATH 6309 - Advanced Linear Algebra II		
Prerequisites:	Graduate standing. Math 4377 or Math 6308	
Text(s):	Linear Algebra, 5th edition, by Friedberg, Insel, and Spence, ISBN: 9780134860244	
Description:	The instructor will cover Sections 5-7 of the textbook. Topics include: Eigenvalues/Eigenvectors, Cayley-Hamilton Theorem, Inner Products and Norms, Adjoints of Linear Operators, Normal and Self-Adjoint Operators, Orthogonal and Unitary Operators, Jordan Canonical Form, Minimal Polynomials.	

{back to Graduate Courses} (https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php#topgradonline)

MATH 6386 - Big Data Analytics		
Prereguisites:	Graduate standing. Students must be in the Statistics and Data Science, MS	
Prerequisites.	program. Linear algebra, probability, statistics, or consent of instructor.	

Text(s):	 "Learning Spark: Lightning-Fast Data Analytics", by Jules S. Damji, Brooke Wenig, Tathagata Das, and Denny Lee, 2020, 2nd Edition, O'Reilly Media. (LS) ISBN 13: 978149205004 [Available for free on UH Library à Safari Books Online] "Big Data Analytics with R: Leverage R Programming to uncover hidden patterns in your Big Data", by Simon Walkowiak, 2016, 1st Edition, Packt Publishing. ISBN 13: 9781786466457 [Available for free on UH Library à Safari Books Online] Mining of Massive Datasets 3rd Edition by Jure Leskovec, Anand Rajaraman, Jeffrey David Ullman 2020, 3rd Edition, Cambridge University Press. ISBN 13: 978-1108476348 [Available for free at http://www.mmds.org/]
Description:	Description : Concepts and techniques in managing and analyzing large data sets for data discovery and modeling: big data storage systems, parallel processing platforms, and scalable machine learning algorithms. Class notes: Computer and internet access required for course. For the current list of minimum technology requirements and resources, copy/paste/navigate to the URL http://www.uh.edu/online/tech/requirements. For additional information, contact the office of Online & Special Programs at UHOnline@uh.edu or 713-743-3327. Course instruction for this section takes place both in a classroom face-to-face environment during the scheduled time and additionally by electronic means.

 $\{ \underline{back\ to\ MSDS\ Courses}\} \ \underline{(https://uh.edu/nsm/math/graduate/graduate-courses/summer/index.php\#topmsds)}$

(Updated 07/07/25)